Предмет: Геометрия, автор: vikulichka

Докажите, что биссектрисы противоположных углов прямоугольника образуют параллелограмм.

Ответы

Автор ответа: помогите1119
0
Решение
Пусть биссектрисы внешних углов при вершинах B и C параллелограмма ABCD пересекаются в точке P, биссектрисы внешних углов при вершинах C и D — в точке Q, внешних углов при вершинах A и D — в точке R, внешних углов при вершинах A и B — в точке S.

Поскольку биссектрисы внутренних односторонних углов при параллельных прямых и секущей перпендикулярны, то PQRS — прямоугольник.

Пусть M — середина BC. Тогда PM — медиана прямоугольного треугольника BPC, поэтому PM = MC. Значит,

< MPC = < PCM = < PCK,

где K — точка на продолжении стороны DC за точку C. Следовательно , PM || CD. Аналогично докажем, что если N — середина AD, то RN = ND и RN || CD. Кроме того , MN || CD и MN = CD. Следовательно, точки M и N лежат на диагонали PR прямоугольника PQRS и

PR = PM + MN + NR = MC + CD + ND = BC + CD.
Похожие вопросы
Предмет: Математика, автор: nargiz11112009
Предмет: Алгебра, автор: persegor2
Предмет: История, автор: Чигиз