Предмет: Геометрия,
автор: монк2
доказать теорему если диагонали параллелограмма перпендикулярны , то этот параллелограмм - ромб
Ответы
Автор ответа:
0
Дано: AB ║ CD; BC ║ DA; AC ⊥ BD.
Доказать: ABCD - ромб.
Решение:AC ∩ BD = O.
AO = OC и BO = OD т.к. диагонали параллелограмма делятся точкой пересечения на два равных отрезка.
Диагонали перпендикулярны, поэтому ΔABO, ΔBCO, ΔCDO и ΔDAO - прямоугольные, эти треугольники равны по двум катетам BO = OD и AO = OC. У равных треугольников соответственные стороны равны, поэтому их гипотенузы равны, а именно AB = BC = CD = DA. Параллелограмм, у которого все стороны равны, является ромбом, что и требовалось доказать.
Приложения:
Похожие вопросы
Предмет: История,
автор: VityushaLP
Предмет: Биология,
автор: kalininamarija6
Предмет: Психология,
автор: maksskrip2003
Предмет: Алгебра,
автор: Kyk07
Предмет: Химия,
автор: nosiktanya