Предмет: Геометрия,
автор: SmileHP
Вершины четырехугольника ABCD
являются серединами сторон
четырехугольника, диагонали
которого равны 6 дм и
пересекаются под углом 60°.
Вычислите площадь
четырехугольника ABCD.
Ответы
Автор ответа:
0
Вершины четырехугольника ABCD
являются серединами сторон
четырехугольника abcd
так как d1=d2, значит abcd -прямоугольник, следовательно АВСД тоже прям-к
S(abcd) = 1/2 *d1*d2*sin60 =1/2 *6*6*sin60=9√3
из подобия четырехугольников следует
S(ABCD)/S(abcd) = (1/2)^2 = 1/4
S(ABCD) = 1
являются серединами сторон
четырехугольника abcd
так как d1=d2, значит abcd -прямоугольник, следовательно АВСД тоже прям-к
S(abcd) = 1/2 *d1*d2*sin60 =1/2 *6*6*sin60=9√3
из подобия четырехугольников следует
S(ABCD)/S(abcd) = (1/2)^2 = 1/4
S(ABCD) = 1
Похожие вопросы
Предмет: Химия,
автор: morozmaria888
Предмет: Информатика,
автор: geheheue
Предмет: Математика,
автор: davidkoifmanox51eu
Предмет: Математика,
автор: Аноним
Предмет: Литература,
автор: Лизка2223