Предмет: Алгебра,
автор: ivanolov
5х+1=6х-3/х найти область допустимых значений функции
Ответы
Автор ответа:
0
Заданное выражение записываем в виде функции:
у = 5х + 1 - ((6х-3)/х) = 5х + 1 - 6 + (3/х) = 5х - 5 + (3/х).
Так как переменная есть в знаменателе, то график такой функции - гиперболическая кривая.
Найдём производную этой функции.
y' = 5 - (3/x²) и приравняем её нулю.
5 - (3/x²) = 0.
(5x² - 3)/x² = 0. Достаточно приравнять нулю числитель.
5x² - 3 = 0.
x² = 3/5.
x = +-√(3/5).
Имеем 2 значения точек экстремума. Подставим их в функцию и находим 2 значения:
у = -5 + 2√15 ≈ 2,7459667,
у = -5 - 2√15 ≈ -12,745967.
В этих точках касательная к графику параллельна оси Ох и функция достигает предельных значений.
Получаем область допустимых значений функции:
x ≤ -12,745967, x ≥ 2,7459667.
Эти же значения можно записать так:
x ≤ -5 - 2√15, x ≥ -5 + 2√15.
у = 5х + 1 - ((6х-3)/х) = 5х + 1 - 6 + (3/х) = 5х - 5 + (3/х).
Так как переменная есть в знаменателе, то график такой функции - гиперболическая кривая.
Найдём производную этой функции.
y' = 5 - (3/x²) и приравняем её нулю.
5 - (3/x²) = 0.
(5x² - 3)/x² = 0. Достаточно приравнять нулю числитель.
5x² - 3 = 0.
x² = 3/5.
x = +-√(3/5).
Имеем 2 значения точек экстремума. Подставим их в функцию и находим 2 значения:
у = -5 + 2√15 ≈ 2,7459667,
у = -5 - 2√15 ≈ -12,745967.
В этих точках касательная к графику параллельна оси Ох и функция достигает предельных значений.
Получаем область допустимых значений функции:
x ≤ -12,745967, x ≥ 2,7459667.
Эти же значения можно записать так:
x ≤ -5 - 2√15, x ≥ -5 + 2√15.
Похожие вопросы
Предмет: Қазақ тiлi,
автор: zhanasraimbek
Предмет: Русский язык,
автор: zauneeva1983
Предмет: Физика,
автор: toltaialtyn
Предмет: Химия,
автор: danylu1