Предмет: Физика, автор: Pliseff6955

Человек бежит по эскалатору. В первый раз он насчитал n1 = 50 ступенек, во второй раз, двигаясь в ту же сторону со скоростью втрое большей, он насчитал n2 = 75 ступенек. Сколько ступенек он насчитал бы на неподвижном эскалаторе?

Ответы

Автор ответа: pavel18061
0
Введем обозначения.
v, 3v-скорости пассажира относительно покоящегося эскалатора;
u-скорость движущегося эскалатора;
l-длина эскалатора;
l1-длина одной ступеньки эскалатора (горизонтальная часть ступеньки)
n-количество ступенек покоящегося эскалатора;
Очевидно, что l=l1*n;
Определим, используя условие задачи, движется ли пассажир против движения  эскалатора либо по движению эскалатора.
Очевидно, что движение эскалатора и пассажира совпадают, так как при скорости в 3 раза большей он пробегает на 25 ступенек больше, так как время прохождения пассажиром эскалатора при большей скорости пассажира меньше, а за меньшее время меньшее количество ступенек успевает убежать от пассажира, а значит пассажир успевает пройти больше ступенек. Если же пассажир движется против движения, то при меньшей скорости он будет двигаться дольше, а так как ступеньки движутся навстречу, то за больший промежуток времени пассажир пройдет больше ступенек, так как их больше появится навстречу пассажиру за больший промежуток времени.
Составим 2 уравнения:
В каждом уравнении в левой части 1-е слагаемое-это та часть ступенек эскалатора, которую прошел пассажир, 2-е слагаемое-это та часть ступенек эскалатора, которая ушла от пассажира в силу движения ступенек эскалатора. Разумеется сумма этих двух слагаемых равна длине  покоящегося эскалатора.
 left { {{50*l1+ frac{n*l1}{v+u}*u =n*l1} atop {75*l1+ frac{n*l1}{3v+u}*u =n*l1}} right.;
 left { {{ frac{3*n}{n-50} =3( frac{v}{u}+1 }) atop { frac{n}{n-75} =3 frac{v}{u}+1 }} right.;
 frac{3n}{n-50} -2= frac{n}{n-75};
    frac{n+100}{n-50}= frac{n}{n-75};
 n^{2} +25n-7500= n^{2} -50n; n=100.
Похожие вопросы
Предмет: Алгебра, автор: kghuziel
Предмет: Английский язык, автор: xiaomimarketredmi