Предмет: Геометрия, автор: Stafix2012

2. Сторона основания правильной четырехугольной пирамиды равна 4 см , а апофема образует с плоскостью основания угол в 60 °. Найдите площадь полной поверхности пирамиды .

Ответы

Автор ответа: ATLAS
0

Sполн=Sосн+Sбок

Sосн=4^2=16(см2)

Sбок=4*S(треуг)=4*1/2*4*l=8l,где l-апофема пирамиды

l=4/(2cos60)=4/(2*1/2)=4 (см)

Sбок=8*4=32(см2)

Sполн=16+32=48(см2)

Автор ответа: vajny
0

SABCD - прав. пирамида. ABCD - квадрат. О -т. перес. диагон. SO - высота пирамиды. Проведем SK перпенд AD. SK - апофема. Угол SKO = 60 гр.

КО = CD/2 = 2 см. Из тр-ка SKO:

SK = KO/cos 60 = 4 см. 

Sполн = Sосн + 4Sграни = 4^2 + 4*(0,5*4*4) = 16 + 32 = 48 см^2

Ответ: 48 см^2.

Похожие вопросы
Предмет: Алгебра, автор: krikynovagalina
Предмет: История, автор: Lutovaidar24
Предмет: Химия, автор: Defender
Предмет: Алгебра, автор: пенчекряк