Лодка проходит 16 км по течению реки на 12 мин быстрее, чем то же расстояние против течения. Найдите собственную скорость лодки, если скорость течения реки равна 2 км/ч.
Ответы
Пусть собственная скорость лодки равна х км/ч,
тогда скорость лодки по течению равна х+2 км/ч,
а скорость лодки против течения равна х-2 км/ч.
По течению лодка шла 16/(х+2) ч,
а против течения 16/(х-2) ч.
По условию задачи по течению лодка прошла быстрее, чем против течения на 12 мин=12/60 ч=1/5 ч.
Составляем уравнение:
16/(х-2) - 16/(х+2) = 1/5 |*5(x+2)(x-2)
80(x+2) - 80(x-2)=(x+2)(x-2)
80х+160-80х+160=x^2-4
x^2=324
x1=18 и х2=-18<0
х=18(км/ч)-собственная скорость лодки
Пусть скорость лодки равна х , тогда скорость лодки по течению равна х+2 и против течения x-2. По условию задачи 16/(x+2) – время прохождения лодки за течением и
16/(x-2) – время прохождения лодки против течения, учитывая, что 12 минут это 1/5 часа, будем иметь
16/(x-2)-16/(x+2)=1/5
16*5*(x+2)-16*5*(x-5)=(x+2)*(x-2)
80*(x+2)-80*(x-5)=x^2-4
80x+160-80x+160=x^2-4
x^2=324
x=±18
x=-18 < 0– побочное решение, тогда скорость лодки равна 18