Предмет: Математика, автор: panasukt0

Натуральное число при делении на 8 дает в остатке 7.
Доказать, что куб этого числа при делении на 8 дает в остатке 7

Ответы

Автор ответа: Полина01234
0
8n-1 - данное число.
 (8n-1)^{3} - данное число в кубе. Раскладываем его по формуле куба разности:
 8^{3}-3*(8n)^{2}*1+3*8n*1^{2}- 1^{3}=8( 8^{2}-3*8n^{2}+3n)-1 имеет в остатке 7 т. к первое выражение будет делиться нацело на 8.
Автор ответа: Полина01234
0
Первый одночлен* а не выражение. Я ошиблась.
Автор ответа: panasukt0
0
А почему 8n-1, газве не 8n +7?
Автор ответа: panasukt0
0
Разве*
Автор ответа: Полина01234
0
Без разницы, но так доказывать проще. К тому же буквой n обозначаются натуральные числа, то есть я не могу отметить ей 0, что потребуется для получения первого натурального числа при делении на 8 дающего в остатке 7 (8*0+7=7), а использовав выражение 8n-1 для задания числа я смогу получить данное число (8*1-1=7)
Автор ответа: Полина01234
0
То есть разница есть!!!Это я поторопилась в начале
Похожие вопросы
Предмет: Алгебра, автор: wwwruss201673
Предмет: Физика, автор: koliaviktoria6