Предмет: Геометрия,
автор: znatok1413
Дан треугольник ABC, у которого A(-2;5), B(2;2), C(10;0)
1. Пусть AK - биссектриса. Найти коорд. точки K
2. Определить вид треугольника
Ответы
Автор ответа:
0
так как AK - биссектриса, то:
при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
ищем длины AB и AC:
используем формулу:
находим координаты точки K:
теперь определим вид треугольника для этого используем теорему косинусов:
для начала найдем длину BC:
вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый.
Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для AC и косинуса угла B
подставим значения:
cosB<0 поэтому угол тупой и треугольник тупоугольный
Ответ: треугольник тупоугольный
при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
ищем длины AB и AC:
используем формулу:
находим координаты точки K:
теперь определим вид треугольника для этого используем теорему косинусов:
для начала найдем длину BC:
вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый.
Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для AC и косинуса угла B
подставим значения:
cosB<0 поэтому угол тупой и треугольник тупоугольный
Ответ: треугольник тупоугольный
Похожие вопросы
Предмет: Физика,
автор: Polyavka2008
Предмет: Русский язык,
автор: pav231259
Предмет: Информатика,
автор: polinakarpeeva3
Предмет: Математика,
автор: нина139
Предмет: Биология,
автор: julisafonova20