Предмет: Геометрия,
автор: pavelegolik
Из вершины А треугольника АВС проведён отрезок АК, перпендикулярный плоскости треугольника. Найдите площадь треугольника ВСК, если АС=АВ=13, ВС=10, АК=16.
Ответы
Автор ответа:
0
Т.к. КА по условию перпендикуляр, то КС и КВ - наклонные, АС и АВ соответственно их проекции на плоскость АВС.
По условию АС=АВ, значит, ΔАВС - равнобедренный с основанием СВ.
Т.к. проекции равны (АС=АВ), то равны сами наклонные, т.е. КС=КВ, и ΔВСК - равнобедренный с основанием СВ.
Проведем в ΔВСК высоту КН. Тогда
КН также является наклонной для перпендикуляра АК, АН - ее проекция на плоскость АВС.
По теореме, обратной теореме о трех перпендикулярах, АН⊥СВ. Значит, АН является высотой, следовательно, и медианой в ΔАВС.
Отсюда, СН=ВН=5.
В ΔАВН по теореме Пифагора АН²=АВ²-ВН²
В ΔКАН по теореме Пифагора КН²=АН²+АК²
Наконец,
Ответ: 100.
По условию АС=АВ, значит, ΔАВС - равнобедренный с основанием СВ.
Т.к. проекции равны (АС=АВ), то равны сами наклонные, т.е. КС=КВ, и ΔВСК - равнобедренный с основанием СВ.
Проведем в ΔВСК высоту КН. Тогда
КН также является наклонной для перпендикуляра АК, АН - ее проекция на плоскость АВС.
По теореме, обратной теореме о трех перпендикулярах, АН⊥СВ. Значит, АН является высотой, следовательно, и медианой в ΔАВС.
Отсюда, СН=ВН=5.
В ΔАВН по теореме Пифагора АН²=АВ²-ВН²
В ΔКАН по теореме Пифагора КН²=АН²+АК²
Наконец,
Ответ: 100.
Приложения:
Похожие вопросы
Предмет: Математика,
автор: neznaua753
Предмет: Алгебра,
автор: zasawer5544
Предмет: Математика,
автор: fredsow8
Предмет: Математика,
автор: laLudmileylvikki