Предмет: Геометрия,
автор: Удачник66
Дана правильная треугольная призма ABCA1B1C1, в основании которой лежит равносторонний треугольник.
Сторона треугольника AB = 2, высота AA1 = 3.
Дана точка К - середина стороны B1C1.
Строим плоскость AKC и получаем точку P - середину A1B1.
Требуется найти расстояние BH от точки B до этой плоскости APKC.
Отрезок BH на рисунке показан красным.
Как вообще решаются подобные задачи? И правильно ли я построил чертеж?
Приложения:
Удачник66:
Прошу школьное, а не институтское решение! Координаты в пространстве мне тут не нужны.
Ответы
Автор ответа:
1
"дядя Вова - скрипач не нужен! " - чертёж то есть )
пусть А начало координат .
ось x - AС
ось у - перпендикулярно АС в сторону В.
ось z - AA1
координаты интересующих точек
С(2;0;0)
К(1,5;√3/2;3)
В(1;√3;0)
уравнение плоскости АКС - проходит через 0.
аx+by+cz=0
подставляем координаты точек
1.5а+√3/2b+3c=0
2a=0.
a=0
пусть b=1 тогда с= - 1/2√3
y-z/2√3=0
нормализованное уравнение плоскости
к=√(1+1/12)=√(13/12)
y/k-z/2√3k=0
подставляем В в нормализованное уравнение
расстояние от В до АКС равно=
√3/к=√36/√13= 6√13/13
пусть А начало координат .
ось x - AС
ось у - перпендикулярно АС в сторону В.
ось z - AA1
координаты интересующих точек
С(2;0;0)
К(1,5;√3/2;3)
В(1;√3;0)
уравнение плоскости АКС - проходит через 0.
аx+by+cz=0
подставляем координаты точек
1.5а+√3/2b+3c=0
2a=0.
a=0
пусть b=1 тогда с= - 1/2√3
y-z/2√3=0
нормализованное уравнение плоскости
к=√(1+1/12)=√(13/12)
y/k-z/2√3k=0
подставляем В в нормализованное уравнение
расстояние от В до АКС равно=
√3/к=√36/√13= 6√13/13
Похожие вопросы
Предмет: Химия,
автор: vasilenko1809n
Предмет: Физика,
автор: sashkonovak31
Предмет: Химия,
автор: vasilenko1809n
Предмет: Литература,
автор: Аноним
Предмет: Математика,
автор: tdurdy