Предмет: Математика, автор: Dragon77111

Решите задание 21 . Срочно

Приложения:

Ответы

Автор ответа: MrCalling
0
\boxed{ \mathtt{\left \{ {{2y-x=6} \atop {9^{2x+y}=3^{2-xy}}} \right.\\}}\\\boxed{\mathtt{ \left \{ {{2y-x=6} \atop {3^{2*(2x+y)=}3^{2-xy}}} \right. }}\\\boxed{\mathtt{ \left \{ {{x=2y-6} \atop {4(2y-6)+2y=2-y(2y-6)}} \right. }}\\\boxed{\mathtt{ \left \{ {{x=2y-6} \atop {8y-48+2y=2-2y^2+6y}} \right. }}\\\boxed{\mathtt{ \left \{ {{x=2y-6} \atop {2y^2+4y-50=0}} \right. }}\\\boxed{\mathtt{ \left \{ {{x=2y-6} \atop {y^2-2y-25=0}} \right. }}\\\mathtt{y^2-2y-25=0}\\\mathtt{D=4-4*(-25)=104=(\pm2\sqrt{26})^2}\\
\mathtt{x_1= \dfrac{2-2\sqrt26}{2};\ x_1= 1-\sqrt{26} }\\\mathtt{x_2= \dfrac{2+2\sqrt{26}}{2};\ x_2=1+\sqrt{26}}\\\boxed{\mathtt{ \left \{ {{x=2*(1-\sqrt{26})-6} \atop {y=1-\sqrt{26}}} \right. }}\\\boxed{\mathtt{ \left \{ {{x=-4-2\sqrt{26}} \atop {y=1-\sqrt{26}}} \right. }}\\\mathcal{OUR}\\\boxed{\mathtt{ \left \{ {{x=2(1+\sqrt{26})-6} \atop {y=1+\sqrt{26}}} \right. }}\\\boxed{\mathtt{ \left \{ {{x=-4+2\sqrt{26}} \atop {y=1+\sqrt{26}}} \right. }}
\mathtt{OTVET:(-4-2\sqrt{26};1-\sqrt{26});(-4+2\sqrt{26};1+\sqrt{26}).}
Похожие вопросы
Предмет: Математика, автор: zkorolev021