Предмет: Геометрия,
автор: nabludatel00
Вот, придумал еще одну "зарядку для хвоста"
Дан прямоугольный треугольник.
Высота к гипотенузе делит его на два треугольника.
Найти радиусы вписанных окружностей в эти треугольники и в данный треугольник, если известно, что они есть целые числа и их величина минимальна.
Дерзайте! :)
cos20093:
То есть надо просмотреть список пифагоровых троек, и найти там такую (самую первую такую), у которой "катеты" одновременно являются "гипотенузами" других пифагоровых троек. Я вижу (15, 20, 25), у которого высота 12 режет его на два (16, 12, 20) и (9, 12, 20). радиусы 5 4 и 3. Собственно, если решать "с конца", то радиусы и должны образовывать минимальную примитивную пифагорову тройку.
Ответы
Автор ответа:
1
Введем обозначения:
r - радиус окружности, вписанной в большой треугольник,
r₁ - радиус окружности, вписанной в синий треугольник,
r₂ - радиус окружности, вписанной в коричневый треугольник.
Будут использованы формулы:
h² = a₁b₁
a² = a₁c
b² = b₁c
Большой треугольник:
r = (a + b - c)/2 = (√(a₁c) + √(b₁c) - √(c²))/2 = √c·( √a₁ + √b₁ - √c)/2
Синий треугольник:
r₁ = (a₁ + h - a)/2 = (√(a₁)² + √(a₁b₁) - √(a₁c))/2 = √a₁·(√a₁ + √b₁ - √c)/2
Коричневый треугольник:
r₂ = (h + b₁ - b) /2 = (√(a₁b₁) + √(b₁)² - √(b₁c))/2 = √b₁·(√a₁ + √b₁ - √c)/2
r₁/r = √a₁/√c
r₂/r = √b₁/√c
Так как длины радиусов - целые числа, то с, a₁ и b₁ должны быть квадратами целых чисел.
Наименьший квадрат целого числа, который является суммой квадратов целых чисел, это 25 (25 = 9 + 16)
Тогда,
r₁/r = 3/5
r₂/r = 4/5
Так как радиусы должны быть наименьшими, это 3, 4 и 5.
r - радиус окружности, вписанной в большой треугольник,
r₁ - радиус окружности, вписанной в синий треугольник,
r₂ - радиус окружности, вписанной в коричневый треугольник.
Будут использованы формулы:
h² = a₁b₁
a² = a₁c
b² = b₁c
Большой треугольник:
r = (a + b - c)/2 = (√(a₁c) + √(b₁c) - √(c²))/2 = √c·( √a₁ + √b₁ - √c)/2
Синий треугольник:
r₁ = (a₁ + h - a)/2 = (√(a₁)² + √(a₁b₁) - √(a₁c))/2 = √a₁·(√a₁ + √b₁ - √c)/2
Коричневый треугольник:
r₂ = (h + b₁ - b) /2 = (√(a₁b₁) + √(b₁)² - √(b₁c))/2 = √b₁·(√a₁ + √b₁ - √c)/2
r₁/r = √a₁/√c
r₂/r = √b₁/√c
Так как длины радиусов - целые числа, то с, a₁ и b₁ должны быть квадратами целых чисел.
Наименьший квадрат целого числа, который является суммой квадратов целых чисел, это 25 (25 = 9 + 16)
Тогда,
r₁/r = 3/5
r₂/r = 4/5
Так как радиусы должны быть наименьшими, это 3, 4 и 5.
Приложения:
Похожие вопросы
Предмет: Другие предметы,
автор: burakovskaas
Предмет: История,
автор: wipowner
Предмет: Геометрия,
автор: siouxx
Предмет: Математика,
автор: redlyk24
Предмет: Химия,
автор: Lorderon4ik