Предмет: Алгебра,
автор: Ilyasssssss
сколько целых чисел входят в область значений функций?
Ilyasssssss:
https://znanija.com/task/24925316
Ответы
Автор ответа:
3
Отыщем область значений указанной функции.
Для этого сначала преобразуем определённым образом подкоренное выражение для удобства: раскроем скобки, затем дважды используем формулу понижения степени, приведя выражение к квадратному трёхчлену относительно некоторой функции.
Таким образом, мы смогли привести подкоренное выражение к квадратному трёхчлену относительно sin4x. На всякий случай скажу, что в препоследнем равенстве с помощью формулы понижения степени я выразил квадрат синуса через косинус удвоенного угла.
Теперь всё сводится к нахождению наименьшего и наибольшего значений полученного трёхчлена. Если мы сделаем замену t = sin 4x, то получаем квадратный трёхчлен
, ветви соответствующей параболы которого направлены вниз в силу отрицательности коэффициента при квадрате. Найдём её абсциссу оси симметрии:
. Следовательно, квадратичная функция правее оси симметрии монотонно убывает, то есть, при . Поэтому большему значению функции соответствует меньшее значение аргумента. В частности, это происходит и на отрезке . Почему этот отрезок важен, так потому, что вспоминаем, что t - это у нас не переменная сама по себе, а синус, который принимает значения именно из указанного отрезка.
Итак, на отрезке [-1,1] квадратный трёхчлен относительно t убывает, поэтому наименьшее его значение достигается в правом конце(в точке 1), а наибольшее - в левом(в точке -1). То есть,
, где .
То есть, .
А тогда квадратный корень из этого выражения(в силу своей монотонности), даёт .
Теперь считаем, какие целые числа входят в полученную область значений.
0, 1, 2, 3 - и всё. Их ровно 4.
Для этого сначала преобразуем определённым образом подкоренное выражение для удобства: раскроем скобки, затем дважды используем формулу понижения степени, приведя выражение к квадратному трёхчлену относительно некоторой функции.
Таким образом, мы смогли привести подкоренное выражение к квадратному трёхчлену относительно sin4x. На всякий случай скажу, что в препоследнем равенстве с помощью формулы понижения степени я выразил квадрат синуса через косинус удвоенного угла.
Теперь всё сводится к нахождению наименьшего и наибольшего значений полученного трёхчлена. Если мы сделаем замену t = sin 4x, то получаем квадратный трёхчлен
, ветви соответствующей параболы которого направлены вниз в силу отрицательности коэффициента при квадрате. Найдём её абсциссу оси симметрии:
. Следовательно, квадратичная функция правее оси симметрии монотонно убывает, то есть, при . Поэтому большему значению функции соответствует меньшее значение аргумента. В частности, это происходит и на отрезке . Почему этот отрезок важен, так потому, что вспоминаем, что t - это у нас не переменная сама по себе, а синус, который принимает значения именно из указанного отрезка.
Итак, на отрезке [-1,1] квадратный трёхчлен относительно t убывает, поэтому наименьшее его значение достигается в правом конце(в точке 1), а наибольшее - в левом(в точке -1). То есть,
, где .
То есть, .
А тогда квадратный корень из этого выражения(в силу своей монотонности), даёт .
Теперь считаем, какие целые числа входят в полученную область значений.
0, 1, 2, 3 - и всё. Их ровно 4.
Похожие вопросы
Предмет: Физкультура и спорт,
автор: duhinamargarita
Предмет: Українська мова,
автор: KSENIALOX23
Предмет: Биология,
автор: alenavojtovich45
Предмет: Информатика,
автор: hamkochan