Предмет: Алгебра,
автор: supermee
log0,25(x^-2)>=log 4(5-4x)
Решите неравенство
Ответы
Автор ответа:
1
ОДЗ
{x≠0
{5-4x>0⇒4x<5⇒x<1,25
x∈(-∞;0) U (0;1,25)
log(2)(x^-2)/log(2)(0,25)≥log(2)(5-4x)/log(2)4
-2log(2)x/(-2)≥log(2)(5-4x)/2
log(2)x²≥log(2)(5-4x)
x²≥5-4x
x²+4x-5≥0
x1+x2=-4 U x1*x2=-5
x1=-5 U x2=1
+ _ +
--------------------[-5]-------------------[1]----------------------
x≤-5 U x≥1
\\\\\\\\\\\\\\\\\\\\\ ////////////////////////////////////////
---------------[-5]-------(0)--------------[1]-----------(1,25)-----------
/////////////////////////////////\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
x∈(-∞;-5] U [1;1,25)
{x≠0
{5-4x>0⇒4x<5⇒x<1,25
x∈(-∞;0) U (0;1,25)
log(2)(x^-2)/log(2)(0,25)≥log(2)(5-4x)/log(2)4
-2log(2)x/(-2)≥log(2)(5-4x)/2
log(2)x²≥log(2)(5-4x)
x²≥5-4x
x²+4x-5≥0
x1+x2=-4 U x1*x2=-5
x1=-5 U x2=1
+ _ +
--------------------[-5]-------------------[1]----------------------
x≤-5 U x≥1
\\\\\\\\\\\\\\\\\\\\\ ////////////////////////////////////////
---------------[-5]-------(0)--------------[1]-----------(1,25)-----------
/////////////////////////////////\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
x∈(-∞;-5] U [1;1,25)
Похожие вопросы
Предмет: Немецкий язык,
автор: rudinaviktoria14
Предмет: Геометрия,
автор: qwe10089725464110
Предмет: История,
автор: Аноним
Предмет: Алгебра,
автор: reshaemdzfree