Предмет: Другие предметы,
автор: kazakovak1703
Помогите решить
Задание:
Имеется 10 урн с шарами. В двух из них - 8 белых и 2 черных, в трёх - 6 белых и 4 чёрных, в пяти - 5 белых и 5 чёрных. Из случайно взятой урны извлекают 2 шара. Они оказались белыми. Найти вероятность того, что они извлечены из первой группы урн.
Ответы
Автор ответа:
0
Вероятность достать шары из первых двух урн 2/10 (2 урны из 10 всех). Вероятность достать два белых шара (8/10)*(7/9) (8/10 достать первый шар из 8 белых из 10 всех, 7/9 второй из 7 белых из 9 всех). События независимые, перемножаем вероятности: 2*8*7/(10*10*9)=0.12(4)=12,(4)%. Аналогично для второй группы урн: (3/10)*(6/10)*(5/9)=0.1. Для третьей: (5/10)*(5/10)*(4/9)=0.(1). По условию уже взяты два белых шара, то есть из всех возможных событий отбираем только эти, вероятность которых 0.12(4)+0.1+0.(1)=0.335555555.(События выбора урны несовместные, складываем вероятности) Конечная вероятность 0.1244444/0.3355555=0.37086=37.086%
Похожие вопросы
Предмет: Українська мова,
автор: soomonmy
Предмет: Українська література,
автор: s6121022
Предмет: Английский язык,
автор: toni5364
Предмет: Физика,
автор: marytaToo
Предмет: История,
автор: fadeevd351