Предмет: Алгебра,
автор: Ilyasssssss
сумма четных натуральных чисел которые не превышают m, равно х. сумма четных натуральных чисел которые не превышают m, но больше 10 равен y. Если х+у=810 то найдите сумму всех значений m.
mami25366:
условие точно верное?
Ответы
Автор ответа:
1
Сумма четных натуральных чисел от 1 до 10
2 + 4 + 6 + 8 + 10 = 30.
x = y + 30
x + y = 810
y + 30 + y = 810
y = (810 - 30)/2 = 780/2 = 390
x = y + 30 = 390 + 30 = 420.
Сумма четных чисел, которые не превышают m, равна 420
2 + 4 + ... + m = 420 (если m четное).
2 + 4 + ... + (m-1) = 420 (если m нечетное).
В обоих случаях это арифметическая прогрессия.
a1 = 2; d = 2; n = m/2
S(n) = (2*a1 + d(n-1))*n/2 = (2*2 + 2(m/2 - 1))*m/4 = (4 + m - 2)*m/4 = 420
(m + 2)*m - 1680 = 0
m^2 + 2m - 1680 = 0
(m + 42)(m - 40) = 0
m = -42 < 0 - не подходит
m = 40 - подходит.
Но также может быть второе решение, m = 41.
Сумма четных чисел, не больших 41, тоже равна 420.
Ответ: 40 + 41 = 81
2 + 4 + 6 + 8 + 10 = 30.
x = y + 30
x + y = 810
y + 30 + y = 810
y = (810 - 30)/2 = 780/2 = 390
x = y + 30 = 390 + 30 = 420.
Сумма четных чисел, которые не превышают m, равна 420
2 + 4 + ... + m = 420 (если m четное).
2 + 4 + ... + (m-1) = 420 (если m нечетное).
В обоих случаях это арифметическая прогрессия.
a1 = 2; d = 2; n = m/2
S(n) = (2*a1 + d(n-1))*n/2 = (2*2 + 2(m/2 - 1))*m/4 = (4 + m - 2)*m/4 = 420
(m + 2)*m - 1680 = 0
m^2 + 2m - 1680 = 0
(m + 42)(m - 40) = 0
m = -42 < 0 - не подходит
m = 40 - подходит.
Но также может быть второе решение, m = 41.
Сумма четных чисел, не больших 41, тоже равна 420.
Ответ: 40 + 41 = 81
Похожие вопросы
Предмет: Алгебра,
автор: nastyakozoriz0210
Предмет: История,
автор: maryna01122011
Предмет: Литература,
автор: konarevm110
Предмет: История,
автор: kolesniksamson07
Предмет: Биология,
автор: LondraYET