Предмет: Алгебра,
автор: caketea
solve this ..................
Приложения:
Ответы
Автор ответа:
0
1.
Proof:
Let
be a given polynomial function.
Then, by Polynomial remainder theorem,
is a divisor (factor) of
if and only if
.
Hence,

Q.E.D.
2.
Since
is a divisor of
, there is exists
such that
.
Hence,
.
Therefore,

Now, let's find the roots of g(x):

Hence,
are solutions of f(x).
Proof:
Let
Then, by Polynomial remainder theorem,
Hence,
Q.E.D.
2.
Since
Hence,
Therefore,
Now, let's find the roots of g(x):
Hence,
caketea:
WTF! i didn't understand a thing
You asked to solve it, i solved it. I don't know, what you don't understand...
Похожие вопросы
Предмет: Английский язык,
автор: nikolira2019a
Предмет: Українська мова,
автор: ulanasevcenko796
Предмет: Физика,
автор: stnss3040
Предмет: География,
автор: Камилочка200724
Предмет: История,
автор: Аноним