Предмет: Алгебра,
автор: caketea
solve this ..................
Приложения:
Ответы
Автор ответа:
0
1.
Proof:
Let be a given polynomial function.
Then, by Polynomial remainder theorem, is a divisor (factor) of if and only if .
Hence,
Q.E.D.
2.
Since is a divisor of , there is exists such that .
Hence,
.
Therefore,
Now, let's find the roots of g(x):
Hence,
are solutions of f(x).
Proof:
Let be a given polynomial function.
Then, by Polynomial remainder theorem, is a divisor (factor) of if and only if .
Hence,
Q.E.D.
2.
Since is a divisor of , there is exists such that .
Hence,
.
Therefore,
Now, let's find the roots of g(x):
Hence,
are solutions of f(x).
caketea:
WTF! i didn't understand a thing
Похожие вопросы
Предмет: Химия,
автор: alykeevameerim9
Предмет: Английский язык,
автор: inwwqsk
Предмет: Математика,
автор: gubkabobfake
Предмет: География,
автор: Камилочка200724
Предмет: История,
автор: Аноним