Предмет: Математика,
автор: ханума05
Требуется подключить к сети люстру с семью лампочками так, чтобы можно было зажигать любое число лампочек от одной до семи. Можно ли это сделать, используя только три выключателя? А если люстра с восемью лампочками? А с девятью?
Ответы
Автор ответа:
0
Нам нужны три числа, которые по отдельности или в сумме дадут любо число от 1 до 7. Получится, если первый выключатель будет включать только одну лампу, второй будет включать сразу две лампы, третий будет включать сразу 4 лампы. Значит, можно подключить 7 лампочек. Для восьми и девяти лампочек требуется больше выключателей, чтобы выполнить это условие.
Автор ответа:
0
Первый выключатель включает одну лампочку, второй - 2 лампочки и третий - 4 лампочки.
Тогда: ООО - лампочки не горят
I O O - горит одна
O I O - горит две
I I O - горит три
O O I - горит четыре
I O I - горит пять
O I I - горит шесть
I I I - горит семь
Если каждый выключатель рассчитан на 2 положения ("вкл.", "выкл."), то количество лампочек, которое можно включить тремя выключателями из расчета последовательного увеличения количества горящих лампочек, ограничено числом 2³-1 = 8-1 = 7.
1 обусловлена наличием положения "все выключено".
Таким образом, ни 8, ни 9 лампочек нельзя включить тремя выключателями так, чтобы соблюдалось условие последовательного увеличения горящих лампочек.
Если увеличить количество выключателей до 4-х, то количество лампочек можно увеличить до:
2⁴-1 = 15
При этом на четвертый выключатель будет заведено 8 лампочек.
В этом случае можно будет включить любое количество лампочек от 1 до 15.
Вообще, для соблюдения такого условия необходимо, чтобы на каждый выключатель были подключены лампочки в количестве N = 2ⁿ, где n - количество выключателей.
Т.е. на первый: 2⁰=1, на второй: 2¹=2, на третий: 2²=4 и т.д.
Тогда: ООО - лампочки не горят
I O O - горит одна
O I O - горит две
I I O - горит три
O O I - горит четыре
I O I - горит пять
O I I - горит шесть
I I I - горит семь
Если каждый выключатель рассчитан на 2 положения ("вкл.", "выкл."), то количество лампочек, которое можно включить тремя выключателями из расчета последовательного увеличения количества горящих лампочек, ограничено числом 2³-1 = 8-1 = 7.
1 обусловлена наличием положения "все выключено".
Таким образом, ни 8, ни 9 лампочек нельзя включить тремя выключателями так, чтобы соблюдалось условие последовательного увеличения горящих лампочек.
Если увеличить количество выключателей до 4-х, то количество лампочек можно увеличить до:
2⁴-1 = 15
При этом на четвертый выключатель будет заведено 8 лампочек.
В этом случае можно будет включить любое количество лампочек от 1 до 15.
Вообще, для соблюдения такого условия необходимо, чтобы на каждый выключатель были подключены лампочки в количестве N = 2ⁿ, где n - количество выключателей.
Т.е. на первый: 2⁰=1, на второй: 2¹=2, на третий: 2²=4 и т.д.
Похожие вопросы
Предмет: Русский язык,
автор: taglqr
Предмет: Математика,
автор: Millka38360653
Предмет: Геометрия,
автор: Аноним
Предмет: Физика,
автор: влас1997
Предмет: Математика,
автор: kuramaevaa