Предмет: Алгебра, автор: steeprg6969

найти площадь фигуры ограниченной линиями:
y=6x-x²; x=1, x=3.

Ответы

Автор ответа: Gerren
0
S= intlimits^3_1 {6x-x^2} , dx =|3,1(3x^2-x^3/3)=3*3^2-3^3/3-3+1/3=27-9-3+1/3=15+1/3=46/3
Автор ответа: kolobok1431
0
15+1/3=46/3
Автор ответа: kolobok1431
0
S= intlimits^3_1 ({6x- x^{2} } , )dx = intlimits^3_1 {6x} , dx - intlimits^a_1 { x^{2} } , dx= frac{6 x^{2} }{2}|^3_1- frac{ x^{3} }{3}|^3_1=3 x^{2}|^3_1- frac{ x^{3} }{3}|^3_1
(3*3^{2} -3*1^{2})-( frac{ 3^{3} }{3}- frac{1^{3} }{3}  )=27-3-9+ frac{1}{3}=15+ frac{1}{3}= frac{46}{3}
S = 46/3

Похожие вопросы
Предмет: Информатика, автор: никто888