Предмет: Алгебра,
автор: V1TAL1K
Помогите пожалуйста (с подробным решением).
Приложения:
Ответы
Автор ответа:
0
∫(f(x)+g(x))dx=∫f(x)dx+∫g(x)dx ∫k*f(x)dx=k∫f(x)dx ∫x^ndx=x^(n+1)/(n+1)+C ∫e^xdx=e^x+C ∫cosxdx=sinx+C ∫sinxdx=-cosx+C
1) ∫(5sinx+2x^4+e^x)dx=5∫sindx+2√x^4dx+∫e^xdx=-5cosx+2x^5/5+e^x+C
2)∫(3e^x-sinx+x^2)dx=3∫e^xdx-∫sinxdx+∫x^2dx=3e^x+cosx+x^3/3+C
3)∫(6x^2+2cosx-x^5)=6∫x^2dx+2∫cosxdx-∫x^5dx=2x^2+2sinx-x^6/6+C
4)∫(2x^3+4cosx+x^8)=2∫x^3dx+4∫cosxdx+∫x^8dx=x^4/2+4sinx+x^9/9+C
1) ∫(5sinx+2x^4+e^x)dx=5∫sindx+2√x^4dx+∫e^xdx=-5cosx+2x^5/5+e^x+C
2)∫(3e^x-sinx+x^2)dx=3∫e^xdx-∫sinxdx+∫x^2dx=3e^x+cosx+x^3/3+C
3)∫(6x^2+2cosx-x^5)=6∫x^2dx+2∫cosxdx-∫x^5dx=2x^2+2sinx-x^6/6+C
4)∫(2x^3+4cosx+x^8)=2∫x^3dx+4∫cosxdx+∫x^8dx=x^4/2+4sinx+x^9/9+C
Похожие вопросы
Предмет: Русский язык,
автор: kovalevskalana18
Предмет: Математика,
автор: zhusupov339
Предмет: Английский язык,
автор: geinevica56
Предмет: Математика,
автор: zverevaelena
Предмет: Геометрия,
автор: ELOKIK