Предмет: Алгебра,
автор: katyabel2000
Любое плииз
1. Доказать с помощью метода мат. индукции, что -8n-1 делиться на 16 без остатка при любых натуральный n.
2. Решить уравнение(+рациональные корни):
2+3-8- 9х+6 =0
3. Найти cos20, если sin2*sin5*cos(пи/2-7)-cos2*cos(пи/2+5)*cos7=1/6
4. Решить уравнение и записать его корни из промежутка (пи/2;5пи/2): cos4x-cos2x=sin2x*tgx
5. Решить неравенство LOG2
Ответы
Автор ответа:
0
2.
2x⁴+3x³-8x²-9x+6=0
x₁=-2
2x⁴+3x³-8x²-9x+6 |_x+2_
2x⁴+4x³ | 2x³-x²-6x+3
----------
-x³-8x²
-x³-2x²
----------
-6x²-9x
-6x²-12x
------------
3x+6
3x+6
-------
0
2x³-x²-6x+3=0
x₂=0,5
2x³-x²-6x+3 |_x-0,5_
2x³-x² | 2x²-6
--------
-6x+3
-6x+3
--------
0
2x²-6=0 |÷2
x²=3
x₃=√3 x₄=-√3.
Ответ: x₁=-2 x₂=0,5 x₃=√3 x₄=-√3.
5.
logₓ₊₁(5x²-x)≥2
ОДЗ: x+1>0 x>-1 x+1≠1 x≠0 ⇒ x∈(-1;0)U(0;+∞)
5x²+x>0 x(5x-1)>0 x∈(-∞;0)U(0,2;+∞) ⇒ x∈(0,2;+∞)
5x²-x≥(x+1)²
5x²-x≥x²+2x+1
3x²-3x-1≥0
3x²-3x-1=0 D=21
x₁=(3-√21)/6≈-0,264 x₂=(3+√21)/6≈1,264
(x-(3+√21)/6)(x-(3-√21)/6)≥0
x∈(-∞;(3-√21)/6]U[(3+√21)/6;+∞)
Учитывая ОДЗ: x∈[(3+√21)/6;+∞)
Ответ: x∈[(3+√21)/6;+∞).
2x⁴+3x³-8x²-9x+6=0
x₁=-2
2x⁴+3x³-8x²-9x+6 |_x+2_
2x⁴+4x³ | 2x³-x²-6x+3
----------
-x³-8x²
-x³-2x²
----------
-6x²-9x
-6x²-12x
------------
3x+6
3x+6
-------
0
2x³-x²-6x+3=0
x₂=0,5
2x³-x²-6x+3 |_x-0,5_
2x³-x² | 2x²-6
--------
-6x+3
-6x+3
--------
0
2x²-6=0 |÷2
x²=3
x₃=√3 x₄=-√3.
Ответ: x₁=-2 x₂=0,5 x₃=√3 x₄=-√3.
5.
logₓ₊₁(5x²-x)≥2
ОДЗ: x+1>0 x>-1 x+1≠1 x≠0 ⇒ x∈(-1;0)U(0;+∞)
5x²+x>0 x(5x-1)>0 x∈(-∞;0)U(0,2;+∞) ⇒ x∈(0,2;+∞)
5x²-x≥(x+1)²
5x²-x≥x²+2x+1
3x²-3x-1≥0
3x²-3x-1=0 D=21
x₁=(3-√21)/6≈-0,264 x₂=(3+√21)/6≈1,264
(x-(3+√21)/6)(x-(3-√21)/6)≥0
x∈(-∞;(3-√21)/6]U[(3+√21)/6;+∞)
Учитывая ОДЗ: x∈[(3+√21)/6;+∞)
Ответ: x∈[(3+√21)/6;+∞).
Похожие вопросы
Предмет: Математика,
автор: maximkasmernov
Предмет: Физика,
автор: Xoloproshka
Предмет: Физика,
автор: khakimullina588
Предмет: Биология,
автор: Аноним