Предмет: Математика, автор: Marlie

Решите пожалуйста, вообще не получается. Нужно исследовать на сходимость числовые ряды (бесконечность;n=1) a) n!/(2n)! б) n*e^(-n^2)

Ответы

Автор ответа: NNNLLL54
0
1); ; sum limits _{n=1}^{infty } frac{n!}{(2n)!} ; ,\\limlimits _{nto infty } frac{a_{n+1}}{a_{n}} = limlimits _{n to infty}  frac{(n+1)!}{(2n+2)!} cdot  frac{(2n)!}{n!} = limlimits _{n to infty}  frac{n!, (n+1)}{(2n)!, (2n+1)(2n+2)} cdot  frac{(2n)!}{n!}=\\= limlimits _{n to infty}  frac{1}{(2n+1)(2n+2)} =0 textless  1; ; to ; ; sxoditsya

2); ; sumlimits _{n=1}^{infty }, n, e^{-n^2}\\ intlimits^{infty }_1 {x, e^{-x^2}, dx= limlimits _{A to +infty} intlimits^A_1 {x, e^{-x^2}} , dx =[; int , e^{-x^2}cdot (-2x)dx=e^{-x^2}+C, ]=

= limlimits _{A to infty} (-frac{1}{2}e^{-x^2})Big |_1^{A}=-frac{1}{2}cdot   lim_{A to infty}(e^{-A^2}-e^{-1})=\\=-frac{1}{2}cdot  limlimits _{A to infty} ( frac{1}{e^{A^2}} -frac{1}{e})=-frac{1}{2}(0-frac{1}{e})= frac{1}{2e} textless  1; ; to ; ; sxoditsya
Автор ответа: Marlie
0
Спасибо большое!
Похожие вопросы
Предмет: Математика, автор: Аноним
Предмет: Математика, автор: borisiris2010