Предмет: Математика,
автор: darikadasha
Прямая АВ касается окружности с центром О радиуса r в точке В. Найдите радиус окружности, если угол АОВ = 30°, ОА=16 см
Ответы
Автор ответа:
0
Так радиус OB перпендикулярен касательной AB, то треугольник ABC - прямоугольный.
![CosAOB= frac{BO}{AO} \ BO=AO*CosAOB=16 Cos30^o=16 frac{ sqrt{3}}{2}=8 sqrt{3} CosAOB= frac{BO}{AO} \ BO=AO*CosAOB=16 Cos30^o=16 frac{ sqrt{3}}{2}=8 sqrt{3}](https://tex.z-dn.net/?f=CosAOB%3D+frac%7BBO%7D%7BAO%7D++%5C+BO%3DAO%2ACosAOB%3D16+Cos30%5Eo%3D16+frac%7B+sqrt%7B3%7D%7D%7B2%7D%3D8+sqrt%7B3%7D++)
Приложения:
![](https://files.topotvet.com/i/9e0/9e0aaa56419691a55e2eee218ca7da8c.png)
Похожие вопросы
Предмет: История,
автор: nikkelvarvara
Предмет: Геометрия,
автор: madrahimovazilola0
Предмет: Кыргыз тили,
автор: ekaterinarubilina08
Предмет: Математика,
автор: pyparka