Предмет: Математика,
автор: akuratob2011
исследовать функцию с помощью производной и построить график y=x^3-6x^2+9x-3
Ответы
Автор ответа:
0
1. Область определения
Х€(-∞,+∞)
2. Пересечение с осью Х.
Х= 0, Х = -3.
3. Пересечение с осью У.
У(0) = 0.
4. Поведение на бесконечности.
У(-∞) = -∞
У(+∞) = +∞
5. Исследование на четность.
Y(+x) = x³+6x²+9
Y(-х) = - х³+6х-9
Функция ни четная ни нечетная.
6. Монотонность.
Производная функции
Y' = 3x²+12x+9
Точки экстремумов
х1 = -3 х2 = -1.
Ymax(-3) = 0
Ymin(1) = 4.
Возрастает Х€(-∞,-3]∪[-1,+∞)
Убывает X€[-3,-1]
7. Точки перегиба - нули второй производной.
Y" = 6x+12 = 0
Х= -2.
Х€(-∞,+∞)
2. Пересечение с осью Х.
Х= 0, Х = -3.
3. Пересечение с осью У.
У(0) = 0.
4. Поведение на бесконечности.
У(-∞) = -∞
У(+∞) = +∞
5. Исследование на четность.
Y(+x) = x³+6x²+9
Y(-х) = - х³+6х-9
Функция ни четная ни нечетная.
6. Монотонность.
Производная функции
Y' = 3x²+12x+9
Точки экстремумов
х1 = -3 х2 = -1.
Ymax(-3) = 0
Ymin(1) = 4.
Возрастает Х€(-∞,-3]∪[-1,+∞)
Убывает X€[-3,-1]
7. Точки перегиба - нули второй производной.
Y" = 6x+12 = 0
Х= -2.
Похожие вопросы
Предмет: История,
автор: Аноним
Предмет: Русский язык,
автор: sergeevap09793
Предмет: Биология,
автор: izeldadasova
Предмет: Литература,
автор: 219738787