Предмет: Геометрия,
автор: musya1508
К окружности радиуса 7 см проведены две касательные из одной точки удаленной от центра на 25 см. Найти расстояние между точками касания.
Ответы
Автор ответа:
0
Ответ: 13,44 см
Объяснение:
МА и МВ - касательные, точки А и В - точки касания.
MO = 25 см,
ОА = ОВ = 7 см - радиусы.
ОА⊥МА и ОВ⊥МВ как радиусы, проведенные в точку касания.
По свойству касательных, проведенных из одной точки, МА = МВ и ∠АМО = ∠ВМО.
Тогда МК - биссектриса равнобедренного треугольника МАВ, значит является и медианой и высотой, ⇒
К - середина АВ, АК⊥МО.
ΔМОА: ∠МАО = 90°, по теореме Пифагора
МА = √(МО² - ОА²) = √(25² - 7²) = √((25 - 7)(25 + 7)) =
= √(18 · 32) = √(9 · 2 · 16 · 2) = 3 · 2 · 4 = 24 см
АК - высота прямоугольного треугольника МОА.
Smoa = 1/2 MO · AK = 1/2 OA · MA
AK = OA · MA / MO = 7 · 24 / 25 = 168/25 = 6,72 см
АВ = 2 АК = 2 · 6,72 = 13,44 см
Приложения:
Похожие вопросы
Предмет: Математика,
автор: len180106a
Предмет: Қазақ тiлi,
автор: bogdanmamaev37
Предмет: Математика,
автор: ivanmokichev12
Предмет: Математика,
автор: фейлер1
Предмет: География,
автор: Виленкин11