Предмет: Алгебра, автор: alinamanukyan5

Первый рабочий изготовил 120 деталей, а второй – 144 детали. Первый рабочий изготавливал на 4 детали в час больше, чем второй, и работал на 3 часа меньше второго. Сколько деталей в час изготавливал каждый рабочий?

Ответы

Автор ответа: zhenyaM2002
0
I рабочий :
Объем работы  А₁ = 120  (деталей)
Производительность  V₁ = х  (дет./час)
Время работы   t₁ = 120/х   (часов)

II рабочий :
А₂ = 144   (дет.)
V₂= x - 4   (дет./час)
t₂ = 144/(x-4)   (часов)

По условию :  t₂  - t₁  = 3
Уравнение:
144/(х-4)    -  120/х =  3            | * x(x-4)
х≠0 ;  х≠4
144x   - 120(x-4)=3x(x-4)
144x - 120x  -120 * (-4)  = 3*(x²-4x)
24x +480 = 3(x²-4x)
3*(8x+160) = 3*(x²-4x)              |:3
8х + 160 = х² - 4х
х² -4х - 8х - 160 = 0
х² -12x-160=0
D= (-12)²  - 4*1*(-160)  = 144+640=784=28²
D> 0  -  два корня уравнения
x₁= (12-28)/(2*1) =-16/2 = - 8  не удовл. условию задачи
х₂= (12 + 28) / 2  = 40/2= 20 (дет./час)  производительность I рабочего (V₁)
V₂= 20 - 4 = 16 (дет./час)  производительность II рабочего
Проверим:
t₁ = 120/20= 6 (ч.) время работы I рабочего
t₂ = 144/16 = 9 (ч.) время работы II рабочего
t₂ - t₁ = 9 - 6 = 3 (часа) на столько меньше время работы  I рабочего, чем II-го.

Ответ:  20 деталей в час изготавливал  первый рабочий,
16 деталей в час - второй.

Похожие вопросы