Предмет: Геометрия,
автор: NanoMalinka
диагональ равнобедренной трапеции перпендикулярна боковой стороне, которая равна 15 см,. Найдите площадь трапеции, если радиус описанной окружности = 12,5 см
Ответы
Автор ответа:
0
Если диагональ трапеции, вписанной в окружность, перпендикулярна боковой стороне, то ее большее основание - диаметр описанной окружности (см. рисунок).
Обозначим трапецию АВСД. Опустим высоту ВН.
Треугольник АВД - прямоугольный, АН- проекция катета АВ на гипотенузу АД.
АД=2R= 25 (см)
Катет - среднее пропорциональное между гипотенузой и проекцией катета на нее.
АВ²=АД•АН
АН=АВ²:АД=225:25=9 (см)
ВН=√(AB²-AH²)=√(225-81)=12 (см)
Высота равнобедренной трапеции, опущенная на большее основание, делит его на отрезки, больший из которых равен средней линии трапеции.
НД=25-9=16 (см)
Площадь трапеции равна произведению ее высоты на полусумму оснований, т.е. на среднюю линию.
S (АВСД)=ВН•НД=12•16=192 см²
Приложения:
Похожие вопросы
Предмет: Математика,
автор: skirsanov952
Предмет: Английский язык,
автор: Аноним
Предмет: Геометрия,
автор: golden2505
Предмет: Математика,
автор: koteikobydeiko2