Предмет: Геометрия,
автор: фаргат
Как доказать теорему что медиана проведённая к гипотенузе прямоугольного треугольника равна половине гипотенузы
Ответы
Автор ответа:
0
Самое простое доказательство этой теоремы через радиус описанной окружности.
Около прямоугольного треугольника АВС (угол С = 90 градусов) опишем окружность (вершины треугольника АВС лежат на окружности, все углы треугольника - вписанные углы). Центр О этой окружности лежит в середине гипотенузы АВ, так как вписанный угол равен половине градусной меры дуги, на которую опирается, а прямой угол опирается на половину окружности, концы которой соединяет диаметр АВ.
Отрезок СО яляется медианой и радиусом описанной около треугольника АВС окружности.
Итак, АО = ВО = СО, как радиусы. Теорема доказана.
Около прямоугольного треугольника АВС (угол С = 90 градусов) опишем окружность (вершины треугольника АВС лежат на окружности, все углы треугольника - вписанные углы). Центр О этой окружности лежит в середине гипотенузы АВ, так как вписанный угол равен половине градусной меры дуги, на которую опирается, а прямой угол опирается на половину окружности, концы которой соединяет диаметр АВ.
Отрезок СО яляется медианой и радиусом описанной около треугольника АВС окружности.
Итак, АО = ВО = СО, как радиусы. Теорема доказана.
Приложения:
Похожие вопросы
Предмет: Математика,
автор: Аноним
Предмет: Математика,
автор: rustamakbarov066
Предмет: Русский язык,
автор: greycat08
Предмет: Обществознание,
автор: данче06091996
Предмет: Математика,
автор: Елена171119871986