Предмет: Геометрия,
автор: ledila
Из точки М к окружности проведены касательная MN(N – точка касания) и секущая MK, пересекающая окружность в точке Р так, что РМ длиннее РК на 2 и короче МN на 3. Найдите длину отрезка касательной(MN).
Ответы
Автор ответа:
0
OL=OK, как радиусы одной окружности, ΔLOK - равнобедренный, ∠OLK=∠OKL=38°
∠MNK=90°, т. к. МN - касательная, значит
∠NMK=180-(90+38)=52°
∠MNK=90°, т. к. МN - касательная, значит
∠NMK=180-(90+38)=52°
Похожие вопросы
Предмет: Математика,
автор: zabolotnaanastasya
Предмет: ОБЖ,
автор: oxsaiz
Предмет: Математика,
автор: skirsanov952
Предмет: Математика,
автор: неизвестно18