Предмет: Геометрия,
автор: Темур2017
Боковая сторона равнобокой трапеции образует с основанием угол 60,а высота трапеции равна 6√3 см. Найдите площадь трапеции,если в нее можно вписать окружность.
Ответы
Автор ответа:
0
Пусть ABCD - равнобокая трапеция с основаниями BC u AD, AB=CD - боковые стороны трапеции. Угол BAD = углу CDA = 60°
BE= H = 6√3 (cм) - высота трапеции.
В трапецию можно вписать окружность в том случае, если суммы её противоположных сторон равны ⇒ BC + AD = AB + CD = 2*AB
Площадь трапеции равна произведению полусуммы ее оснований на высоту трапеции.
S = (BC + AD)/2 * H
S = 2*AB / 2 * BE
S = AB * 6√3
В прямоугольном треугольнике ABE:
AB - гипотенуза, BE u AE - катеты.
Угол BAE = 60°
AB = BE / sin60°
AB = 6√3 / √3/2 = 12 (cм)
S = 12 * 6√3 = 72√3 (cм²)
BE= H = 6√3 (cм) - высота трапеции.
В трапецию можно вписать окружность в том случае, если суммы её противоположных сторон равны ⇒ BC + AD = AB + CD = 2*AB
Площадь трапеции равна произведению полусуммы ее оснований на высоту трапеции.
S = (BC + AD)/2 * H
S = 2*AB / 2 * BE
S = AB * 6√3
В прямоугольном треугольнике ABE:
AB - гипотенуза, BE u AE - катеты.
Угол BAE = 60°
AB = BE / sin60°
AB = 6√3 / √3/2 = 12 (cм)
S = 12 * 6√3 = 72√3 (cм²)
Похожие вопросы
Предмет: Математика,
автор: Аноним
Предмет: Қазақ тiлi,
автор: rozaberdikulova2
Предмет: Английский язык,
автор: pediklife
Предмет: Математика,
автор: annetachekanov
Предмет: Математика,
автор: love1211