Предмет: Геометрия,
автор: obyava12
Катеты прямоугольного треугольника = 16 и 30см. Вычислите расстояние от центра вписанного в треугольника круга, до центра описанного вокруг него круга
Ответы
Автор ответа:
0
Найдём сначала гипотенузу данного прямоугольного треугольника.
Пусть катеты равны a и b, гипотенуза равна c, радиус вписанной окружности равен r, радиус описанной - R, расстояние между центрами окружностей равно d.
По теореме Пифагора:
Радиус описанной окружности около прямоугольного треугольника равен половине гипотенузы (гипотенуза является диаметром этой окружности).
Радиус вписанной окружности в прямоугольный треугольник можно найти по формуле:
.
Расстояние между центрами вписанной и описанной окружностями находятся по формуле Эйлера:
Пусть катеты равны a и b, гипотенуза равна c, радиус вписанной окружности равен r, радиус описанной - R, расстояние между центрами окружностей равно d.
По теореме Пифагора:
Радиус описанной окружности около прямоугольного треугольника равен половине гипотенузы (гипотенуза является диаметром этой окружности).
Радиус вписанной окружности в прямоугольный треугольник можно найти по формуле:
.
Расстояние между центрами вписанной и описанной окружностями находятся по формуле Эйлера:
Приложения:
Автор ответа:
0
Спасибо Вам огромное!
Похожие вопросы
Предмет: Математика,
автор: damelyaantipova
Предмет: Математика,
автор: svetusik20810
Предмет: История,
автор: kitwink
Предмет: Математика,
автор: Troa
Предмет: Биология,
автор: DariaMala23