Предмет: Геометрия, автор: vishnya33

Перерізи кулі двома паралельними площинами , між якими лежить центр кулі мають площі 144пі см , 25пі см. Знайти площу поверхні кулі, якщо відстань між паралельними площинами дорівнює 17 см

Ответы

Автор ответа: Hrisula
0

Сечения шара двумя параллельными плоскостями, между которыми лежит центр шара, имеют площади 144π см, 25π см. Найти площадь поверхности шара, если расстояние между параллельными плоскостями равен 17 см

                     * * * 

 Сечение шара плоскостью - круг.  

Расстояние между плоскостями равно длине перпендикуляра, опущенного с одной плоскости на другую. 

Центр шара и центры сечений параллельными плоскостями лежат на одной прямой. 

На схематическом рисунке приложения – сечение шара через  его центр О и центры сечений. 

АК- радиус меньшего сечения, СН - радиус большего сечения, СК - расстояние между центрами сечений, ОА=ОН - радиус шара. 

Квадрат радиуса меньшего сечения АК²=S1:π=25

Квадрат радиуса большего сечения СН²=S2:π=144

Обозначим расстояние между центром шара и большим сечением СО=х, тогда между центром шара и меньшим сечением ОК=17-х. 

Из ∆ АОК по т.Пифагора

R²=АК²+ОК²

Из  СОН 

R²=CH²+CO²

Приравняем оба значения R²:

АК²+ОК²=CH²+CO²

25+289-34х+х²=144+х*

34х=170

х=5

R²=ОН²=25+144=169

Формула площади поверхности шара 

S=4πR²

S=4π•169=676π см²

Приложения:
Автор ответа: vishnya33
0
Спасибо
Похожие вопросы
Предмет: Математика, автор: gaga32866