Предмет: Геометрия,
автор: MrREHEBNUK123
диагонали равнобокой трапеции перпендикулярны и делят её среднюю линию на три равные части. Чему равна площадь трапеции если её большее основание равно 12 см
Ответы
Автор ответа:
0
Обозначим каждую третью часть средней линии за х.
Тогда верхнее основание равно 2х,
Можно найти значение верхнего основания КМ из выражения:
КМ = (12+2х)/2 = 3х.
6 + х = 3х,
2х = 6,
х = 6/2 = 3 см.
Верхнее основание равно 2х = 2*3 = 6 см.
Средняя линия равна 3х = 3*3 = 9 см.
Из заданного условия следует, что диагонали наклонены к основаниям под углом 45°.
Поэтому высота трапеции равна сумме половин оснований, то есть средней линии.
Тогда площадь S трапеции равна: S = 9*9 = 81 см².
Тогда верхнее основание равно 2х,
Можно найти значение верхнего основания КМ из выражения:
КМ = (12+2х)/2 = 3х.
6 + х = 3х,
2х = 6,
х = 6/2 = 3 см.
Верхнее основание равно 2х = 2*3 = 6 см.
Средняя линия равна 3х = 3*3 = 9 см.
Из заданного условия следует, что диагонали наклонены к основаниям под углом 45°.
Поэтому высота трапеции равна сумме половин оснований, то есть средней линии.
Тогда площадь S трапеции равна: S = 9*9 = 81 см².
Автор ответа:
0
ПОМОГИТЕ!!! https://znanija.com/task/11504018
Похожие вопросы
Предмет: Русский язык,
автор: kozeborg40
Предмет: Физика,
автор: tolikvolk
Предмет: Українська мова,
автор: Аноним
Предмет: Химия,
автор: Yudedeah
Предмет: Математика,
автор: Нюша901