Предмет: Алгебра,
автор: PEKC1111
при каких значения параметра а функция у= ax³+(3/2)x²+ax возрастает всюду на R
Ответы
Автор ответа:
0
Если производная функции y=f(x) положительна для любого x из интервала X, то функция возрастает на X.
Следовательно, чтобы функция возрастала на всём множестве действительных чисел, производная должна быть положительна на всей числовой оси.
Найдём производную:
f(x)=(ax³+(3/2)x²+ax)'=3ax²+3x+aНеобходимо, чтобы 3ax²+3x+a>0 для всех х.
Тогда должны выполняться два условия:
1) а>0, тогда ветви параболы будут направленны вверх.
2) D<0, тогда не будет нулей, график производной будет располагаться выше оси Ох.
Найдём дискриминант, учитывая, что в выражении 3ax²+3x+a
первый коэффициент равен 3а, второй коэффициент равен 3, свободный член а.
D=3²-4∙3а∙а=9-12а²
9-12а²<0
4а²-3>0
Решим методом интервалов:
а1=-√3/2; а2=√3/2
///////////////// /////////////////
-∞ -√3/2 √3/2 +∞
+ - +
а<-√3/2
а>√3/2
Учитывая, что а>0, получаем ответ: а>√3/2
Похожие вопросы
Предмет: Қазақ тiлi,
автор: akzhibek0sagimbaeva
Предмет: История,
автор: danil290941
Предмет: Українська мова,
автор: nesterenkosvetlana21
Предмет: Математика,
автор: гамзат4
Предмет: Математика,
автор: milana8o