Предмет: Геометрия,
автор: vikagerasimova
на стороне AD паралеллограмма ABCD отмечена точка K так, что AK=4 см, KD=5 см, BK=12 см. Диагональ BD=13 см. докажите, что треугольник BKD прямоугольный. Найдите площади треугольника ABK и паралеллограмма ABCD
Ответы
Автор ответа:
0
а) Если треугольник BKD прямоугольный, то мы можем применить к нему т. Пифагора: BK^2+KD^2=BD^2; BD^2=5^2+12^2=169; BD=кв.кор из 169=13 и по условию BD=13см, из этого следует что треугольник BKD-прямоугольный.
б) Мы доказали , то что треугольник BKD -прямоугольный с прямым углом K следственно треугольник ABK тоже прямоугольный. Площадь прямоугольного треугольника вычисляется по формуле S=1/2*Ak*BK=1/2*4*12=24см^2
AD=AK+KD=4+5=9 Площадь параллелограмма равна произведению основания на высоту; BK*AD=12*9=108см^2
Похожие вопросы
Предмет: Алгебра,
автор: vlad727373
Предмет: Русский язык,
автор: Аноним
Предмет: Алгебра,
автор: maks989dov
Предмет: Алгебра,
автор: школьник471
Предмет: Математика,
автор: mishka7373