Предмет: Алгебра, автор: NK999

  Найдите двузначное число, если цифра его десятков на 2 больше цифры единиц, а произведение числа и суммы его цифр равно 900.Распишите нормально что бы было понятно что почему делается!!!

Ответы

Автор ответа: Опыт
0
пусть запись числа имеет вид 10х+у где х число десятков у число единиц
х-у=2  x=2+y
(х+у)*(10х+у)=900
(2+2y)(20+11y)=900
(1+y)(20+11y)=450
20+11y+20y+11y^2=450
11y^2+31y-430=0
y=(-31+141)/22=5
x=2+y=5+2=7
ответ число 75


Похожие вопросы