Предмет: Геометрия,
автор: annacolovyeva
Точка О1 и О2 - центры равных качающихся окружностей, BO2 перпендикулярен O1O2, AB=10 см . Чему равна площадь треугольника ABO2?
Приложения:
Ответы
Автор ответа:
0
Пусть ВО₂=х, тогда АО₂=3х т.к. х равен радиусу равных окружностей.
ВО₂²+АО₂²=АВ²,
х²+(3х)²=10²,
10х²=100,
х=√10.
ВО₂=√10 см, АО₂=3√10 см.
S=АО₂·ВО₂/2=3√10·√10/2=15 см² - это ответ.
ВО₂²+АО₂²=АВ²,
х²+(3х)²=10²,
10х²=100,
х=√10.
ВО₂=√10 см, АО₂=3√10 см.
S=АО₂·ВО₂/2=3√10·√10/2=15 см² - это ответ.
Похожие вопросы
Предмет: Алгебра,
автор: biwjyhaj
Предмет: Английский язык,
автор: Leyla114174
Предмет: Математика,
автор: eilin2842
Предмет: Математика,
автор: smoking97
Предмет: Алгебра,
автор: Student2010