Предмет: Геометрия,
автор: robotunchik
окружность радиуса 4 корень из 3 описана около правильного многоугольника со стороной 12 см. найдите число сторон правильного многоугльника
Ответы
Автор ответа:
0
Сторона вписанного правильного многоугольника образует с радиусами описанной около него окружности равносторонний треугольник.
В нашем случае это треугольник с боковыми сторонами, равными 4√3 и основанием, равным 12см. По теореме косинусов найдем угол при вершине этого треугольника:
Cosα = (b²+c²-a²)/2bc. (α - между b и c). В нашем случае:
Cosα=(2*(4√3)²-12²)/(2*4√3)²=-48/(2*48)=-(1/2).
То есть центральный угол тупой и равен 120°.
Следовательно, число сторон нашего вписанного многоугольника равно 360°/120°=3. Это ответ.
P.S. Можно проверить по формуле радиуса описанной около правильного треугольника окружности: R=(√3/3)*a. В нашем случае
R=(√3/3)*12=4√3, что соответствует условию задачи.
В нашем случае это треугольник с боковыми сторонами, равными 4√3 и основанием, равным 12см. По теореме косинусов найдем угол при вершине этого треугольника:
Cosα = (b²+c²-a²)/2bc. (α - между b и c). В нашем случае:
Cosα=(2*(4√3)²-12²)/(2*4√3)²=-48/(2*48)=-(1/2).
То есть центральный угол тупой и равен 120°.
Следовательно, число сторон нашего вписанного многоугольника равно 360°/120°=3. Это ответ.
P.S. Можно проверить по формуле радиуса описанной около правильного треугольника окружности: R=(√3/3)*a. В нашем случае
R=(√3/3)*12=4√3, что соответствует условию задачи.
Похожие вопросы
Предмет: Обществознание,
автор: izumovaina
Предмет: МХК,
автор: mahmutovak190
Предмет: Алгебра,
автор: akonyanalibaeva06
Предмет: Математика,
автор: Deniska1612
Предмет: Математика,
автор: almaz101