Предмет: Геометрия,
автор: sergei10052
основание пирамиды треугольник со сторонами 6 10 14см. Каждый двугранный угол при основании равен 30°. Вычислить площадь боковой поверхности пирамиды. Срочно пожалуйста!!!!)
Ответы
Автор ответа:
0
Если каждый двугранный угол пирамиды при основании равен 30°, то проекции боковых рёбер на основание совпадают с биссектрисами углов основания, а вершина пирамиды проецируется в точку пересечения биссектрис.
Находим радиус r вписанной окружности.
r = √((p-a)(p-b)(p-c)/p).
Полупериметр р = (6+10+14)/2 = 30/2 = 15 см.
r = √((9*5*1)/15) = √3 см.
Находим апофему А:
А = r/cos α = √3/cos 30° = √3/(√3/2) = 2 см.
Sбок = (1/2)РА = (1/2)*30*2 = 30 см².
Находим радиус r вписанной окружности.
r = √((p-a)(p-b)(p-c)/p).
Полупериметр р = (6+10+14)/2 = 30/2 = 15 см.
r = √((9*5*1)/15) = √3 см.
Находим апофему А:
А = r/cos α = √3/cos 30° = √3/(√3/2) = 2 см.
Sбок = (1/2)РА = (1/2)*30*2 = 30 см².
Похожие вопросы
Предмет: Геометрия,
автор: Druna228
Предмет: Українська література,
автор: 3923006532z
Предмет: Английский язык,
автор: ozdorenko
Предмет: Литература,
автор: lera2003lerok32
Предмет: Обществознание,
автор: Аноним