Предмет: Геометрия, автор: youblueeyes

Решите пожалуйста две задачи по геометрии!!

Приложения:

Ответы

Автор ответа: Andr1806
0
1.В треугольнике ОСО1: О1С перпендикулярна ОА.
Значит ОсО1=АВ, как противоположные стороны прямоугольника.
О1С=√[(R+r)²-(R-r)²]=√[(R²+2Rr+r²-R²+2Rr-r²] или
О1С=√4Rr или √(2R*2r).
Что и требовалось доказать.
P.S. √4Rr=2√Rr.

2.АС параллельна ВD. <ACD+<BDC=180° (как односторонние при параллельных АВ и СD и секущей СD. ОС и ОD - биссектрисы <ACD и <BDC соответственно, так как точка О равноудалена от сторон этих углов (на расстояние =r).
Тогда <OCD+<ODC=90° и треугольник СОD - прямоугольный.
ОК - высота этого прямоугольника из прямого угла и по свойству этой высоты ОК²=СК*КD.
Но СК=АС, а КD=BD как касательные к окружности из одной точки.
Следовательно, ОК=√АС*ВD, что и требовалось доказать.
Похожие вопросы
Предмет: Українська мова, автор: pihorkriszti