Предмет: Математика, автор: Hurrem

Вычислите площадь фигуры, ограниченной графиком функции y= |x^2 - 4| ,Вычислите площадь фигуры, ограниченной графиком функции y= |x^2 - 4| , отрезком [-1;2] оси ОХ и прямой х=-1

Ответы

Автор ответа: Minsk00
0
Вычислите площадь фигуры, ограниченной графиком функции y= |x^2 - 4| ,Вычислите площадь фигуры, ограниченной графиком функции y= |x^2 - 4| , отрезком [-1;2] оси ОХ и прямой х=-1

На отрезке [-1;2]    x^2-4<=0 поэтому y=Ix^2-4I =4-x^2
y=4-x^2 -это парабола ветви которой направлены вниз.
Необходимо найти площадь фигруры ограниченной сверху параболой y=4-x^2 снизу прямой Ох на отрезке от x1=-1 до x2=2
S=интегр[от -1 до 2](4-x^2)dx = (4x-(1/3)x^3)I от x=-1 до x=2 I=
=4*2-(1/3)*2^3 - 4*(-1)+(1/3)*(-1)^3 = 8 - 8/3 + 4 -1/3 =12 -9/3 =9 
Похожие вопросы
Предмет: Алгебра, автор: TheStrike666
Предмет: Химия, автор: kuchanskayaelizaveta