Предмет: Геометрия, автор: Viks56

Есть ли у кого какие идеи насчет задачи С4?  Подскажите, пожалуйста, а то у меня как-то не получается ничего

Приложения:

Ответы

Автор ответа: cos20093
0
Два треугольника PQC и PDC, общая сторона PC = x,
1 случай.
Сумма углов Ф = PQC и PDC равна 180°, если PQCD выпуклый четырехугольник, поэтому
12^2 + 4^2 - 2*4*12*cos(Ф) = x^2; (x = PC)
12^2 + 12^2 + 2*12*12*cos(Ф) = x^2;
Отсюда
3*(12^2 + 4^2) - 2*12*12*cos(Ф) = 3*x^2;
Поэтому
5*12^2 + 3*4^2 = 4*x^2; 
x^2 = 196;
x = 8√3;
2 случай.  
Если PQ и DC пересекаются, при этом углы Ф = PQC и PDC равны (опираются на дугу PC)
12^2 + 4^2 - 2*4*12*cos(Ф) = x^2; (x = PC)
12^2 + 12^2 - 2*12*12*cos(Ф) = x^2;
x^2 = 96;
x = 4√3;

Крайне неудобный интерфейс, набирать решения просто невозможно. А уж этот корень из 3, в строке x = 8√3; навсегда переехавший на другую строчку - это просто смешно. Я полчаса боролся, и победить сумел только, скопировав целиком строку из другого места.
А, еще и градусы съехали... вот не буду исправлять, пусть виновные любуются...
Похожие вопросы
Предмет: Другие предметы, автор: bsnshz
Предмет: Математика, автор: Аноним