Предмет: Алгебра,
автор: svetlanakravet
Бассейн наполняется двумя трубами за 2ч55мин. Вторая труба может наполнить его на 2ч скорее, чем первая. За какое время наполнит бассейн каждая труба, работая отдельно?
Ответы
Автор ответа:
0
1:2=1/2 часть бассейна наполняют обе трубы за 1 час
Пусть х часов - то время, за которое может наполнить бассейн первая труба, тогда вторая труба наполняет бассейн за (х+3) часов. За 1 час работы первая труба наполнит 1/х часть бассейна, вторая - 1/(х+3), а обе - 1/х+1/(х+3) или 1/2 бассейна. Составим и решим уравнение:
1/х+1/(х+3)=1/2 |*2x(x+3)
2x+6+2x=x^2+3x
x^2+3x-4x-6=0
x^2-x-6=0
по теореме Виета:
х1=3; х2=-2<0 (не подходит)
Ответ: первая труба может наполнить бассейн за 3 часа.
Пусть х часов - то время, за которое может наполнить бассейн первая труба, тогда вторая труба наполняет бассейн за (х+3) часов. За 1 час работы первая труба наполнит 1/х часть бассейна, вторая - 1/(х+3), а обе - 1/х+1/(х+3) или 1/2 бассейна. Составим и решим уравнение:
1/х+1/(х+3)=1/2 |*2x(x+3)
2x+6+2x=x^2+3x
x^2+3x-4x-6=0
x^2-x-6=0
по теореме Виета:
х1=3; х2=-2<0 (не подходит)
Ответ: первая труба может наполнить бассейн за 3 часа.
Похожие вопросы
Предмет: История,
автор: 009Ksenia009
Предмет: Английский язык,
автор: gacanovosti4
Предмет: Математика,
автор: garynyhalekseev
Предмет: Алгебра,
автор: klimenkol21
Предмет: Математика,
автор: kirill22092003