Предмет: Математика,
автор: ЮмикоN
Помогите! Найти интеграл S (1 + 1/4х)^2 хdx, Найти интеграл S е^х (е^х +1)^4 dx, Найти интеграл S cos^3 4xdx , Вычислить S (внизу 0 наверху 2) dx/ (2+1)^2
Ответы
Автор ответа:
0
S(1+ 1/4х)^2 хdx=S(1+(1/2)x+(1/16)*x^2)xdx =S(x+(1/2)x^2+(1/16)*x^3)dx =(1/2)x^2+
+(1/6)x^3+(1/64)*x^4 +C
S е^х (е^х +1)^4 dx = S(e^x+1)^4(de^x+1) = (1/5)(e^x+1)^5+C
S cos^3 4xdx = S(cos^2(4x)*cos4x )dx = (1/4)S(1-sin^2(4x))cos4xd(4x)=
=(1/4)S(1-sin^2(4x)dsin4x= (1/4)*(sin4x-(1/3)sin^3(4x))+C
S (внизу 0 наверху 2) dx/ (2+1)^2 = S(от0 до 2)(1/3^2)dx =(1/9)S(от0до2)dx=(1/9)x Iот0 до 2I=
(1/9)*(2-0) =2/9
Похожие вопросы
Предмет: Математика,
автор: gurgenbagmanyan
Предмет: Алгебра,
автор: mosonya2007
Предмет: Информатика,
автор: dorofeevnekita
Предмет: Алгебра,
автор: dgkfj