Предмет: Геометрия, автор: zubovyuriy

Высота основания правильной тре- угольной пирамиды составляет три четверти высоты пирамиды. Найдите тангенс угла между боковым ребром и плоскостью основания пирамиды.

Ответы

Автор ответа: mami25366
0
Пусть SABC - правильная треугольная пирамида с вершиной S. В оновании данной пирамиды лежит правильный (равносторонний) треугольник ABC. Высота пирамиды SO опущена в центр основания - центр треугольника ABC, который также является центром описанной окружности с радиусом R. 
Расстояние от любой вершины треугольника  ABC до центра O равно R= a√3/3, где а - сторона треугольника.⇒ AO=a√3/3
Высота треугольника h (ABC) = a√3/2, где а - сторона треугольника.
h (ABC) составляет 3/4 высоты пирамиды (SO)
h(АBC) = 3/4 * SO
SO = 4/3 * h (ABC) = 4/3 * a√3/2 = 2*a√3/3
Рассмотрим прямоугольный треугольник AOS. Угол AOS=90 град, тк SO - высота. Ребро пирамиды AS - гипотенуза, SO и AO - катеты. 
Тангенс искомого угла SAO равен отношению противолежащего катета SO к прилежащему катету AO

                      2*a√3/3
tg(SAO) = ------------------ = 2
                         a√3/3 

что приблизительно соответствует углу 63°30' (по таблице Брадиса)⇒ такой прямоугольный треугольник существует
Автор ответа: zubovyuriy
0
спасибо
Похожие вопросы
Предмет: Литература, автор: EvdokZver