Предмет: Геометрия,
автор: 302503
Сформулируйте и докажитеитеорему, обратную теорему о свойстве касательной
Ответы
Автор ответа:
0
Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания. Если сформулировать обратно, то радиус, проведенный в точку касания, перпендикулярен касательной к окружности.
Предположим, что радиус не перпендикулярен касательной. Тогда точка, к которой проведён радиус, не будет лежать на касательной, а окружность и касательная к ней обязательно должны иметь одну (и только одну) общую точку. Либо, если точка, к которой проведён радиус, будет лежать на прямой, то прямая и окружность будут иметь уже две общие точки и тогда прямая не будет являться касательной, а будет пересекать окружность. Значит радиус, проведенный в точку касания, перпендикулярен касательной к окружности
Предположим, что радиус не перпендикулярен касательной. Тогда точка, к которой проведён радиус, не будет лежать на касательной, а окружность и касательная к ней обязательно должны иметь одну (и только одну) общую точку. Либо, если точка, к которой проведён радиус, будет лежать на прямой, то прямая и окружность будут иметь уже две общие точки и тогда прямая не будет являться касательной, а будет пересекать окружность. Значит радиус, проведенный в точку касания, перпендикулярен касательной к окружности
Похожие вопросы
Предмет: Українська мова,
автор: maksimklos2
Предмет: Английский язык,
автор: M11m1m1
Предмет: Геометрия,
автор: ruvimshevchuk2006
Предмет: Математика,
автор: goshakuptsov
Предмет: История,
автор: Freluteriane