Предмет: Математика, автор: Hacker21Rus

найти промежутки возрастания функции : f(x) = 2x^3 - 3x^2 + 5

Ответы

Автор ответа: Аноним
0

f(x) = 2x^3 - 3x^2 + 5

 

D(f) = R

 

Найдём производную:

 

f ' (x) = (2x^3 - 3x^2 + 5) ' = 2*3x^2 - 3*2x = 6x^2 - 6x

 

D(f ') = R

 

Найдём критические точки

 

f ' (x) =0

 

6x^2 - 6x = 0 /:6

 

x^2 -x =0

 

x(x-1) =0

 

x=0 или x=1

 

Знаки будут чередоваться таким образом  +/-/+

 

Следовательно, данная функция возрастает на x∈(-∞; 0] ∪ [1; +∞)

 =========================================

 

 

 

Похожие вопросы
Предмет: Музыка, автор: Аноним
Предмет: Музыка, автор: Аноним