Предмет: Геометрия,
автор: radga751
Диагонали ромба ABCD пересекаются в точке О. Отрезок ОК перпендикулярный к площади ромба. Доведите ,что площади ромба BKD и ABC перпендикулярные
Ответы
Автор ответа:
0
Если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.
ОК ⊥ пл. АВС ⇒ ОК⊥ВД , так как ВД ∈ пл. АВС
пл. ВКД содержит ОК (то есть ОК ∈ ВКД )
пл. ВКД проходит через прямую ОК, перпендикулярную пл. АВС ⇒
пл. ВКД ⊥ пл. АВС
ОК ⊥ пл. АВС ⇒ ОК⊥ВД , так как ВД ∈ пл. АВС
пл. ВКД содержит ОК (то есть ОК ∈ ВКД )
пл. ВКД проходит через прямую ОК, перпендикулярную пл. АВС ⇒
пл. ВКД ⊥ пл. АВС
Похожие вопросы
Предмет: Алгебра,
автор: bosslena433
Предмет: ОБЖ,
автор: arab222
Предмет: История,
автор: kudryavtsevvadim999
Предмет: Математика,
автор: аиша7
Предмет: Математика,
автор: naipost