Предмет: Геометрия,
автор: bashkirova893
Основание прямой призмы-ромб. Диагонали призмы составляют углы 30 градусов и 60 градусов с плоскостью основания,высота призмы 6 см. Найдите площадь полной поверхности призмы.
Ответы
Автор ответа:
0
Площадь полной поверхности призмы – сумма площади двух оснований и площади боковой поверхности.
Обозначим вершины призмы ABCDD1A1B1C1
S осн= половине произведения диагоналей.
АС=АА1:tg30°=6√3
BD=BB1:tg60°=6/√3
S ABCD=6√3•6/√3=36 см*
Площадь боковой поверхности - произведение высоты призмы на периметр основания, т.е. 6•4AB
Ромб - параллелограмм.
В параллелограмме сумма квадратов диагоналей равна сумме квадратов всех его сторон. Для ромба, стороны которого равны,
D²+d²=4AB².
(6√3)²+(6/√3)²=4AB²
AB=√(27+3))=√30
Sбок=6•4√30=24√30см²
S полн=2•36+24√30=24(3+√3)см²
Приложения:
Похожие вопросы
Предмет: География,
автор: elizavetatriputa
Предмет: Биология,
автор: yuliaribka2007
Предмет: Геометрия,
автор: оригинальныйник0
Предмет: Математика,
автор: VikaBloger